metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.9D14, (C2×Dic7).56D4, C22.240(D4×D7), (C22×C4).30D14, (C22×C14).64D4, C14.84(C4⋊D4), C23.17(C7⋊D4), C7⋊3(C23.11D4), C14.C42⋊14C2, C2.9(Dic7⋊D4), C14.33(C4.4D4), C22.97(C4○D28), (C22×C28).24C22, (C23×C14).35C22, C23.369(C22×D7), C14.15(C42⋊2C2), C2.21(D14.D4), C22.95(D4⋊2D7), (C22×C14).327C23, C2.21(Dic7.D4), C14.57(C22.D4), C2.7(C23.18D14), C2.6(C23.23D14), C2.13(C23.D14), (C22×Dic7).41C22, (C2×C22⋊C4).9D7, (C2×Dic7⋊C4)⋊10C2, (C2×C14).431(C2×D4), (C14×C22⋊C4).8C2, C22.125(C2×C7⋊D4), (C2×C23.D7).14C2, (C2×C14).143(C4○D4), SmallGroup(448,486)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.9D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=c, f2=bcd, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=be13 >
Subgroups: 692 in 170 conjugacy classes, 57 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C23, C23, C23, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic7, C2×Dic7, C2×C28, C22×C14, C22×C14, C22×C14, C23.11D4, Dic7⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C22×C28, C23×C14, C14.C42, C2×Dic7⋊C4, C2×C23.D7, C14×C22⋊C4, C24.9D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C7⋊D4, C22×D7, C23.11D4, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, C23.D14, D14.D4, Dic7.D4, C23.23D14, C23.18D14, Dic7⋊D4, C24.9D14
(1 110)(2 134)(3 112)(4 136)(5 86)(6 138)(7 88)(8 140)(9 90)(10 114)(11 92)(12 116)(13 94)(14 118)(15 96)(16 120)(17 98)(18 122)(19 100)(20 124)(21 102)(22 126)(23 104)(24 128)(25 106)(26 130)(27 108)(28 132)(29 57)(30 198)(31 59)(32 200)(33 61)(34 202)(35 63)(36 204)(37 65)(38 206)(39 67)(40 208)(41 69)(42 210)(43 71)(44 212)(45 73)(46 214)(47 75)(48 216)(49 77)(50 218)(51 79)(52 220)(53 81)(54 222)(55 83)(56 224)(58 177)(60 179)(62 181)(64 183)(66 185)(68 187)(70 189)(72 191)(74 193)(76 195)(78 169)(80 171)(82 173)(84 175)(85 165)(87 167)(89 141)(91 143)(93 145)(95 147)(97 149)(99 151)(101 153)(103 155)(105 157)(107 159)(109 161)(111 163)(113 142)(115 144)(117 146)(119 148)(121 150)(123 152)(125 154)(127 156)(129 158)(131 160)(133 162)(135 164)(137 166)(139 168)(170 219)(172 221)(174 223)(176 197)(178 199)(180 201)(182 203)(184 205)(186 207)(188 209)(190 211)(192 213)(194 215)(196 217)
(1 110)(2 111)(3 112)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 109)(29 211)(30 212)(31 213)(32 214)(33 215)(34 216)(35 217)(36 218)(37 219)(38 220)(39 221)(40 222)(41 223)(42 224)(43 197)(44 198)(45 199)(46 200)(47 201)(48 202)(49 203)(50 204)(51 205)(52 206)(53 207)(54 208)(55 209)(56 210)(57 190)(58 191)(59 192)(60 193)(61 194)(62 195)(63 196)(64 169)(65 170)(66 171)(67 172)(68 173)(69 174)(70 175)(71 176)(72 177)(73 178)(74 179)(75 180)(76 181)(77 182)(78 183)(79 184)(80 185)(81 186)(82 187)(83 188)(84 189)(113 142)(114 143)(115 144)(116 145)(117 146)(118 147)(119 148)(120 149)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 161)(133 162)(134 163)(135 164)(136 165)(137 166)(138 167)(139 168)(140 141)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 162)(2 163)(3 164)(4 165)(5 166)(6 167)(7 168)(8 141)(9 142)(10 143)(11 144)(12 145)(13 146)(14 147)(15 148)(16 149)(17 150)(18 151)(19 152)(20 153)(21 154)(22 155)(23 156)(24 157)(25 158)(26 159)(27 160)(28 161)(29 176)(30 177)(31 178)(32 179)(33 180)(34 181)(35 182)(36 183)(37 184)(38 185)(39 186)(40 187)(41 188)(42 189)(43 190)(44 191)(45 192)(46 193)(47 194)(48 195)(49 196)(50 169)(51 170)(52 171)(53 172)(54 173)(55 174)(56 175)(57 197)(58 198)(59 199)(60 200)(61 201)(62 202)(63 203)(64 204)(65 205)(66 206)(67 207)(68 208)(69 209)(70 210)(71 211)(72 212)(73 213)(74 214)(75 215)(76 216)(77 217)(78 218)(79 219)(80 220)(81 221)(82 222)(83 223)(84 224)(85 136)(86 137)(87 138)(88 139)(89 140)(90 113)(91 114)(92 115)(93 116)(94 117)(95 118)(96 119)(97 120)(98 121)(99 122)(100 123)(101 124)(102 125)(103 126)(104 127)(105 128)(106 129)(107 130)(108 131)(109 132)(110 133)(111 134)(112 135)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 39 119 67)(2 206 120 185)(3 37 121 65)(4 204 122 183)(5 35 123 63)(6 202 124 181)(7 33 125 61)(8 200 126 179)(9 31 127 59)(10 198 128 177)(11 29 129 57)(12 224 130 175)(13 55 131 83)(14 222 132 173)(15 53 133 81)(16 220 134 171)(17 51 135 79)(18 218 136 169)(19 49 137 77)(20 216 138 195)(21 47 139 75)(22 214 140 193)(23 45 113 73)(24 212 114 191)(25 43 115 71)(26 210 116 189)(27 41 117 69)(28 208 118 187)(30 143 58 105)(32 141 60 103)(34 167 62 101)(36 165 64 99)(38 163 66 97)(40 161 68 95)(42 159 70 93)(44 157 72 91)(46 155 74 89)(48 153 76 87)(50 151 78 85)(52 149 80 111)(54 147 82 109)(56 145 84 107)(86 217 152 196)(88 215 154 194)(90 213 156 192)(92 211 158 190)(94 209 160 188)(96 207 162 186)(98 205 164 184)(100 203 166 182)(102 201 168 180)(104 199 142 178)(106 197 144 176)(108 223 146 174)(110 221 148 172)(112 219 150 170)
G:=sub<Sym(224)| (1,110)(2,134)(3,112)(4,136)(5,86)(6,138)(7,88)(8,140)(9,90)(10,114)(11,92)(12,116)(13,94)(14,118)(15,96)(16,120)(17,98)(18,122)(19,100)(20,124)(21,102)(22,126)(23,104)(24,128)(25,106)(26,130)(27,108)(28,132)(29,57)(30,198)(31,59)(32,200)(33,61)(34,202)(35,63)(36,204)(37,65)(38,206)(39,67)(40,208)(41,69)(42,210)(43,71)(44,212)(45,73)(46,214)(47,75)(48,216)(49,77)(50,218)(51,79)(52,220)(53,81)(54,222)(55,83)(56,224)(58,177)(60,179)(62,181)(64,183)(66,185)(68,187)(70,189)(72,191)(74,193)(76,195)(78,169)(80,171)(82,173)(84,175)(85,165)(87,167)(89,141)(91,143)(93,145)(95,147)(97,149)(99,151)(101,153)(103,155)(105,157)(107,159)(109,161)(111,163)(113,142)(115,144)(117,146)(119,148)(121,150)(123,152)(125,154)(127,156)(129,158)(131,160)(133,162)(135,164)(137,166)(139,168)(170,219)(172,221)(174,223)(176,197)(178,199)(180,201)(182,203)(184,205)(186,207)(188,209)(190,211)(192,213)(194,215)(196,217), (1,110)(2,111)(3,112)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,211)(30,212)(31,213)(32,214)(33,215)(34,216)(35,217)(36,218)(37,219)(38,220)(39,221)(40,222)(41,223)(42,224)(43,197)(44,198)(45,199)(46,200)(47,201)(48,202)(49,203)(50,204)(51,205)(52,206)(53,207)(54,208)(55,209)(56,210)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(113,142)(114,143)(115,144)(116,145)(117,146)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,162)(134,163)(135,164)(136,165)(137,166)(138,167)(139,168)(140,141), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,141)(9,142)(10,143)(11,144)(12,145)(13,146)(14,147)(15,148)(16,149)(17,150)(18,151)(19,152)(20,153)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,161)(29,176)(30,177)(31,178)(32,179)(33,180)(34,181)(35,182)(36,183)(37,184)(38,185)(39,186)(40,187)(41,188)(42,189)(43,190)(44,191)(45,192)(46,193)(47,194)(48,195)(49,196)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,197)(58,198)(59,199)(60,200)(61,201)(62,202)(63,203)(64,204)(65,205)(66,206)(67,207)(68,208)(69,209)(70,210)(71,211)(72,212)(73,213)(74,214)(75,215)(76,216)(77,217)(78,218)(79,219)(80,220)(81,221)(82,222)(83,223)(84,224)(85,136)(86,137)(87,138)(88,139)(89,140)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,121)(99,122)(100,123)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,39,119,67)(2,206,120,185)(3,37,121,65)(4,204,122,183)(5,35,123,63)(6,202,124,181)(7,33,125,61)(8,200,126,179)(9,31,127,59)(10,198,128,177)(11,29,129,57)(12,224,130,175)(13,55,131,83)(14,222,132,173)(15,53,133,81)(16,220,134,171)(17,51,135,79)(18,218,136,169)(19,49,137,77)(20,216,138,195)(21,47,139,75)(22,214,140,193)(23,45,113,73)(24,212,114,191)(25,43,115,71)(26,210,116,189)(27,41,117,69)(28,208,118,187)(30,143,58,105)(32,141,60,103)(34,167,62,101)(36,165,64,99)(38,163,66,97)(40,161,68,95)(42,159,70,93)(44,157,72,91)(46,155,74,89)(48,153,76,87)(50,151,78,85)(52,149,80,111)(54,147,82,109)(56,145,84,107)(86,217,152,196)(88,215,154,194)(90,213,156,192)(92,211,158,190)(94,209,160,188)(96,207,162,186)(98,205,164,184)(100,203,166,182)(102,201,168,180)(104,199,142,178)(106,197,144,176)(108,223,146,174)(110,221,148,172)(112,219,150,170)>;
G:=Group( (1,110)(2,134)(3,112)(4,136)(5,86)(6,138)(7,88)(8,140)(9,90)(10,114)(11,92)(12,116)(13,94)(14,118)(15,96)(16,120)(17,98)(18,122)(19,100)(20,124)(21,102)(22,126)(23,104)(24,128)(25,106)(26,130)(27,108)(28,132)(29,57)(30,198)(31,59)(32,200)(33,61)(34,202)(35,63)(36,204)(37,65)(38,206)(39,67)(40,208)(41,69)(42,210)(43,71)(44,212)(45,73)(46,214)(47,75)(48,216)(49,77)(50,218)(51,79)(52,220)(53,81)(54,222)(55,83)(56,224)(58,177)(60,179)(62,181)(64,183)(66,185)(68,187)(70,189)(72,191)(74,193)(76,195)(78,169)(80,171)(82,173)(84,175)(85,165)(87,167)(89,141)(91,143)(93,145)(95,147)(97,149)(99,151)(101,153)(103,155)(105,157)(107,159)(109,161)(111,163)(113,142)(115,144)(117,146)(119,148)(121,150)(123,152)(125,154)(127,156)(129,158)(131,160)(133,162)(135,164)(137,166)(139,168)(170,219)(172,221)(174,223)(176,197)(178,199)(180,201)(182,203)(184,205)(186,207)(188,209)(190,211)(192,213)(194,215)(196,217), (1,110)(2,111)(3,112)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,211)(30,212)(31,213)(32,214)(33,215)(34,216)(35,217)(36,218)(37,219)(38,220)(39,221)(40,222)(41,223)(42,224)(43,197)(44,198)(45,199)(46,200)(47,201)(48,202)(49,203)(50,204)(51,205)(52,206)(53,207)(54,208)(55,209)(56,210)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(113,142)(114,143)(115,144)(116,145)(117,146)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,162)(134,163)(135,164)(136,165)(137,166)(138,167)(139,168)(140,141), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,141)(9,142)(10,143)(11,144)(12,145)(13,146)(14,147)(15,148)(16,149)(17,150)(18,151)(19,152)(20,153)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,161)(29,176)(30,177)(31,178)(32,179)(33,180)(34,181)(35,182)(36,183)(37,184)(38,185)(39,186)(40,187)(41,188)(42,189)(43,190)(44,191)(45,192)(46,193)(47,194)(48,195)(49,196)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,197)(58,198)(59,199)(60,200)(61,201)(62,202)(63,203)(64,204)(65,205)(66,206)(67,207)(68,208)(69,209)(70,210)(71,211)(72,212)(73,213)(74,214)(75,215)(76,216)(77,217)(78,218)(79,219)(80,220)(81,221)(82,222)(83,223)(84,224)(85,136)(86,137)(87,138)(88,139)(89,140)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,121)(99,122)(100,123)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,39,119,67)(2,206,120,185)(3,37,121,65)(4,204,122,183)(5,35,123,63)(6,202,124,181)(7,33,125,61)(8,200,126,179)(9,31,127,59)(10,198,128,177)(11,29,129,57)(12,224,130,175)(13,55,131,83)(14,222,132,173)(15,53,133,81)(16,220,134,171)(17,51,135,79)(18,218,136,169)(19,49,137,77)(20,216,138,195)(21,47,139,75)(22,214,140,193)(23,45,113,73)(24,212,114,191)(25,43,115,71)(26,210,116,189)(27,41,117,69)(28,208,118,187)(30,143,58,105)(32,141,60,103)(34,167,62,101)(36,165,64,99)(38,163,66,97)(40,161,68,95)(42,159,70,93)(44,157,72,91)(46,155,74,89)(48,153,76,87)(50,151,78,85)(52,149,80,111)(54,147,82,109)(56,145,84,107)(86,217,152,196)(88,215,154,194)(90,213,156,192)(92,211,158,190)(94,209,160,188)(96,207,162,186)(98,205,164,184)(100,203,166,182)(102,201,168,180)(104,199,142,178)(106,197,144,176)(108,223,146,174)(110,221,148,172)(112,219,150,170) );
G=PermutationGroup([[(1,110),(2,134),(3,112),(4,136),(5,86),(6,138),(7,88),(8,140),(9,90),(10,114),(11,92),(12,116),(13,94),(14,118),(15,96),(16,120),(17,98),(18,122),(19,100),(20,124),(21,102),(22,126),(23,104),(24,128),(25,106),(26,130),(27,108),(28,132),(29,57),(30,198),(31,59),(32,200),(33,61),(34,202),(35,63),(36,204),(37,65),(38,206),(39,67),(40,208),(41,69),(42,210),(43,71),(44,212),(45,73),(46,214),(47,75),(48,216),(49,77),(50,218),(51,79),(52,220),(53,81),(54,222),(55,83),(56,224),(58,177),(60,179),(62,181),(64,183),(66,185),(68,187),(70,189),(72,191),(74,193),(76,195),(78,169),(80,171),(82,173),(84,175),(85,165),(87,167),(89,141),(91,143),(93,145),(95,147),(97,149),(99,151),(101,153),(103,155),(105,157),(107,159),(109,161),(111,163),(113,142),(115,144),(117,146),(119,148),(121,150),(123,152),(125,154),(127,156),(129,158),(131,160),(133,162),(135,164),(137,166),(139,168),(170,219),(172,221),(174,223),(176,197),(178,199),(180,201),(182,203),(184,205),(186,207),(188,209),(190,211),(192,213),(194,215),(196,217)], [(1,110),(2,111),(3,112),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,109),(29,211),(30,212),(31,213),(32,214),(33,215),(34,216),(35,217),(36,218),(37,219),(38,220),(39,221),(40,222),(41,223),(42,224),(43,197),(44,198),(45,199),(46,200),(47,201),(48,202),(49,203),(50,204),(51,205),(52,206),(53,207),(54,208),(55,209),(56,210),(57,190),(58,191),(59,192),(60,193),(61,194),(62,195),(63,196),(64,169),(65,170),(66,171),(67,172),(68,173),(69,174),(70,175),(71,176),(72,177),(73,178),(74,179),(75,180),(76,181),(77,182),(78,183),(79,184),(80,185),(81,186),(82,187),(83,188),(84,189),(113,142),(114,143),(115,144),(116,145),(117,146),(118,147),(119,148),(120,149),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,161),(133,162),(134,163),(135,164),(136,165),(137,166),(138,167),(139,168),(140,141)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,162),(2,163),(3,164),(4,165),(5,166),(6,167),(7,168),(8,141),(9,142),(10,143),(11,144),(12,145),(13,146),(14,147),(15,148),(16,149),(17,150),(18,151),(19,152),(20,153),(21,154),(22,155),(23,156),(24,157),(25,158),(26,159),(27,160),(28,161),(29,176),(30,177),(31,178),(32,179),(33,180),(34,181),(35,182),(36,183),(37,184),(38,185),(39,186),(40,187),(41,188),(42,189),(43,190),(44,191),(45,192),(46,193),(47,194),(48,195),(49,196),(50,169),(51,170),(52,171),(53,172),(54,173),(55,174),(56,175),(57,197),(58,198),(59,199),(60,200),(61,201),(62,202),(63,203),(64,204),(65,205),(66,206),(67,207),(68,208),(69,209),(70,210),(71,211),(72,212),(73,213),(74,214),(75,215),(76,216),(77,217),(78,218),(79,219),(80,220),(81,221),(82,222),(83,223),(84,224),(85,136),(86,137),(87,138),(88,139),(89,140),(90,113),(91,114),(92,115),(93,116),(94,117),(95,118),(96,119),(97,120),(98,121),(99,122),(100,123),(101,124),(102,125),(103,126),(104,127),(105,128),(106,129),(107,130),(108,131),(109,132),(110,133),(111,134),(112,135)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,39,119,67),(2,206,120,185),(3,37,121,65),(4,204,122,183),(5,35,123,63),(6,202,124,181),(7,33,125,61),(8,200,126,179),(9,31,127,59),(10,198,128,177),(11,29,129,57),(12,224,130,175),(13,55,131,83),(14,222,132,173),(15,53,133,81),(16,220,134,171),(17,51,135,79),(18,218,136,169),(19,49,137,77),(20,216,138,195),(21,47,139,75),(22,214,140,193),(23,45,113,73),(24,212,114,191),(25,43,115,71),(26,210,116,189),(27,41,117,69),(28,208,118,187),(30,143,58,105),(32,141,60,103),(34,167,62,101),(36,165,64,99),(38,163,66,97),(40,161,68,95),(42,159,70,93),(44,157,72,91),(46,155,74,89),(48,153,76,87),(50,151,78,85),(52,149,80,111),(54,147,82,109),(56,145,84,107),(86,217,152,196),(88,215,154,194),(90,213,156,192),(92,211,158,190),(94,209,160,188),(96,207,162,186),(98,205,164,184),(100,203,166,182),(102,201,168,180),(104,199,142,178),(106,197,144,176),(108,223,146,174),(110,221,148,172),(112,219,150,170)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C4○D28 | D4×D7 | D4⋊2D7 |
kernel | C24.9D14 | C14.C42 | C2×Dic7⋊C4 | C2×C23.D7 | C14×C22⋊C4 | C2×Dic7 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C23 | C22 | C22 | C22 |
# reps | 1 | 3 | 1 | 2 | 1 | 2 | 2 | 3 | 10 | 6 | 3 | 12 | 24 | 3 | 9 |
Matrix representation of C24.9D14 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 7 | 1 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 22 | 0 | 0 | 0 | 0 |
7 | 26 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 3 | 17 |
22 | 3 | 0 | 0 | 0 | 0 |
22 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 17 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 19 | 22 |
0 | 0 | 0 | 0 | 10 | 10 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,7,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,7,0,0,0,0,22,26,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,3,0,0,0,0,0,17],[22,22,0,0,0,0,3,7,0,0,0,0,0,0,0,17,0,0,0,0,17,0,0,0,0,0,0,0,19,10,0,0,0,0,22,10] >;
C24.9D14 in GAP, Magma, Sage, TeX
C_2^4._9D_{14}
% in TeX
G:=Group("C2^4.9D14");
// GroupNames label
G:=SmallGroup(448,486);
// by ID
G=gap.SmallGroup(448,486);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,254,387,100,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=c,f^2=b*c*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^13>;
// generators/relations